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It is shown that, in cylindrical and spherical coordinates, particle-to-
grid weighting based on conventional particle-in-cell (PIC) and
cloud-in-cell {CIC) shape factors results in non-unitorm grid densities
even for uniform particle distributions. Instead, alternative, density-
conserving weighting schemes are discussed, including modified PIC
and CIC weighting. € 1993 Academic Press, Inc.

L INTRODUCHION

The vse of particle methods in numerical plasma simula-
tion is now well established [, 27, In such calculations,
electric potentials and fields are solved on a computational
grid, while individual particles move within this grid, each
representing a “cloud™ ol ions or clectrons. An important
step in such calculations is the assignment of particle
charges to the grid, a process which is governed by a particle
shape factor. Generally, this shape factor is not defined a
pricri, and there is considerable flexibility in choosing an
appropriate expression. Examples of common shape factors
are those based on particle-in-cell {PIC) or cloud-in-cell
{CIC) weighting [ 1, 27, ncarest-grid-point {NGP) weighting
I'l, 27, spline-weighting [ 1-47], gaussian-averaged-particle
weighting [ 1], inverse distance weighting [5], and kernel
methods that do not require a spatial grid but still carry the
notion of finite particle clouds [6].

While an arbitrary number of requirements can be
imposed in deriving expressions for a shape factor, any
reasonable model must conserve charge. That is, for cach
particle, the sum of the fractional charges assigned to the
grid must be equal Lo the total charge carried by the particle.
In Scction 11, we argue that another reasonable requirement
{for a shape factor is that iCmust conserve charge density as
well. ‘That is, a uniform distribution of particles should
render a uniform charge density on the grid upon particle-
to-grid weighting, Although, in cartesian coordinates, this
requirement appears to be satisfied for all of the weighting
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schemes mentioned above, we show in Section 11 that it is
not satisfied for the common PIC and CIC weighting
schemes in cylindrical and spherical coordinates.

To reconcile this situation, two approaches are possible.
The first one is to modify the expression for the shape factor
for a given problem. This is done in Sections IV and V,
where alternative PIC and CIC weighting {actors are
derived, and density-conserving formulations of NGP
weighting and spline weighting are discussed. The other
approach relies on redefining the normalization volume that
is used ta obtain the charge density at a grid point from the
charge on the grid point, This approach is described in
Section V1. Conclusions are stated in Section VII.

1I. PROBLEM STATEMENT

Let us define the particle shape factor for a given problem
by §,(x,), where x,, is the coordinate of the particle, and the
index g indicates the dependence on the grid. Charge
localization is generally taken to imply thal S,ix,) has a
maximum (usually unity) when the particle is located
exactly at a grid point (x,=x,) and falls to zero, roughly
monotonically, within some distance, called the support or
smoothing length of the shape factor. The requirement of
charge conservation can now be expressed as

all x,.. (2.1

Z Splx,)=1,

In practice, the summation in Eq. (2.1) is only over a few
grid points, namely those for which the shape Tactor is
non-zero.

Next, in order Lo specily charge density, we note that in
most particle calculations cach grid point is embedded in 2
computational cell, whose boundarics arc in between grid
points. These cells are used, for example, to discretize
Poisson’s equation and Lo calculate the electric field on the
grid from the potentials on the grid. Throughout our discus-
sion, we assume that these cells are the natural choice [or
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calculating charge densities from the charges on the grid
points (the same is done, for example, in Ref. {1, p. 334], in
deriving charge densities on a cylindrical grid using PIC
weighting). Denoting the volume of these celis by V,, we
can thus define, for each cell, a charge density

I
%sngugmm (2.2)
£

where the integral is, in principle, over the entire computa-
tional domain, or, in practice, over only those cells for
which the shape factor is non-zero. The normalized density
from Eq. (2.2) may be interpreted as the expectation value
of the charge density at individual grid points, given an
infinite ensemble of homogencously distributed particles
with unit charge density on the grid. The requirement of
conservation of charge density, then, we argue, is that for
each gridpoint

all g. (2.3)

p.=1,

In other words, if a very large number of, say, equally
charged particles is distributed homogeneously over the
computational domain, the number of particles in each cell
should be proportional to the volume of that cell.

For a further development of this concept we confine our
discussion to a single coordinate and assume a bounded,
not necessarily uniform, grid with grid points x,,, where #
ranges from O through N, and where x, may or may not be
at the origin of the coordinate system. This grid may repre-
sent either a one-dimensional, cartesian system (D=1), a
two-dimensional cylindrical system (D=2), or a three-
dimensionai spherical system {D = 3). The intervais on the
grid thus represent line segments, circular rings, or spherical
shells, respectively. The cell boundaries, located between
grid points, are denoted by x,. . Quite generally, these
boundaries can be expressed in terms of the grid coordinates
as

xn+i/2=dnxn+1+(1_a;x)xn:x;r-*-anljxns (24)

where dAx,=x,,,—x,, and 0<a, < 1. Usually, but not
necessarily, a, = 1, so that the cell boundaries are located
midway between grid points.

Furthermore, we confine our discussion to shape factors
with two-point support. Such two-point shape factors can
be written in terms of a left-hand and a right-hand part as

follows

Sr; (xp )! xn —1
S,7(x,),
0, otherwise,

<X, € X,

Sn(xp): xngxpg\xn+la

(2.5)
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where §(x,)=87 (x,) and it is understood that the
factors §5(x,) and § 7 (x,) are not defined, since they fall
outside of the computational domain. Charge localization is
now expressed by the requirements

So(x)=57(x)=1
S_(xn71)=S:(xn+l)=05

n

(2.6)

and the charge conservation requirement from Eq. (2.1)

implies that the right-hand and left-hand shape factors of

neighboering grid points are simply related by
S;T(xp)+er_+1(xp)=ls xn"‘<~x

(2.7)

P g xn+ 1-
Because of this simple relationship, it suffices to specify only
the, say, right-hand shape factors §.F(x,), as we do in the
following.

With Egs. (2.2) and (2.3), the requirement that charge
density be conserved upon particle-to-grid weighting can be
written as

Xa+l 1
D — D L
J- SAx, ) x; ‘dxf,zﬁ(xﬁmkx,f_ 2 h
1

Xy

XHSXS.X,H_], (28)
where the expression on the right-hand side is essentially the
D-dimensional cell velume V, from Eq. (2.2). For the zeroth
grid point, both x,,_,,, and x, _, in Eq. {2.8) are replaced by
X4, whereas, for the last grid point, both x,, » and x,
are replaced by x . It is easy to show that, on a bounded or
semi-infinite grid, the requirement from Eq. (2.8) must be
satisfied for each half cell individually. That is, the right-
hand shape factors S (x,) from Eq. (2.5) must satisfy the
condition

Xn+1 1
(s xp ==

. D (2.9)

D D
(xn+ 2 X )’

namely forallO<n< N,

Below, we show how the common PIC and CIC weight-
ing schemes violate this density conservation requirement in
cylindrical and spherical coordinates, and we derive some
alternative expressions without this difficulty. However, we
offer no further justification for the density conservation
requirement itseif, beyond that mentioned above: namely,
the notion that a homogeneous distribution of unit charges
should populate each of the cells of the computational
domain uniformly.

III. CONVENTIONAL PIC AND CIC WEIGHTING

Two charge assignment schemes that are commeonly used
in particle simulations are those based on particle-in-cell
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Xn Xp X

i n+1
Xn-1/2 Xot1/2

FIG. 1. THlustration of particle-in-cell {a) and cloud-in-cell weighting
{(b) for a particle at x,, located between grid points x, and x,, . In both
cases, the width of the “cloud™ is 4x, = x,,, , — x,,. and the charge assigned
to x, is proportional to the shaded area with subscript “1.” In (b), the
values x, ., indicate the cell boundaries.

and cloud-in-cell weighting. Following the discussion in
Ref. [1], shape factors for these methods are found,
essentially, by inspection of a diagram like that shown in
Fig. 1 (see also the figures on pages 21 and 309 in Ref. [1]}.
In the PIC scheme, the shape factor is found by linear
interpolation, area-weighting, or volume-weighting. Thus, a
particle at position x,, located between the grid points x,,
and x, , ., gives a right-hand shape factor
P O SR B,

n - LD D>
Ver+ Ves Xpo =X,

(3.1)

where the volumes V., and V,, are indicated in Fig. la.
{We will use the term volume for each of the cases con-
sidered here, namely for dimensions D=1, D =2, as well as
D = 3.) Note that this PIC shape factor is independent of the
cell boundaries between grid points, both in form and prin-
ciple. Note also that this general shape factor satisfies the
localization condition from Eq. {2.6), namely that it is equal
to unity when the particle is located exactly at a grid point
and that it falls to zero exactly at the neighboring grid
points.

In the CIC scheme, the particle is conceived as a “rec-
tangular” cloud of unit density, distributed symmetrically
around the particle position x,, with a width 4x, equal to
the distance between the two grid peints that surround x,.
In this scheme, the shape factor is given by the fraction of
the cloud which falls within the boundaries of the cell in
which the nearest grid point is embedded. With the volumes
Ve, and V~, from Fig. 1b, the right-hand CIC shape factor
is thus given by

V
S*(ix )=——"FL
. (Xp) Vo ¥ Ve
=(x,,+%Ax,,)D—(xp—%Ax,,)D
(x,+5d4x,)° —(x,—§4x,)""

(3.2)
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(b)

FIG. 2. Examples of cylindrical shape factors for a uniform grid with
cell boundaries midway between grid points: (a) PIC weighting; (b) CIC
weighting. The dashed curves correspond to the conventional, non-density-
conserving shape factors from Section ITI. The solid curves represent the
alternative, density-conserving shape factors from Section IV,

where Ax,=x,,,;—x, and it has been assumed that the
cell boundaries are midway between gridpoints, that is,
Xp.1p=X,+14x,. Note that Eq.(3.2) can be applied,
without difficulty, at the boundaries of the grid. However, at
the origin of a cylindrical coordinate system (that is,. D =2
and x,=0), the shape factor does not satisfy the usual
localization condition from Eq.(2.6). Instead., S;(0)=
S (0)=14 for this case. Examples of PIC and CIC shape
factors in both cylindrical and spherical coordinates are
shown by the dashed curves in Figs. 2 and 3.

In order to address the conservation of charge density,
then, let us first consider the case of cartesian coordinates.
For this case, with D=1, it is easily seen that the PIC and
CIC shape factors are identical for arbitrary choices of
grid and particle coordinates [1, pp. 21, 3097]. Also, it is
easily verified that this linear PIC/CIC weighting satisfies
Eq.(29) for arbitrary x, and x,,.,, implying that the
requirement for the conservation of charge density is
satisfied. '

Still, despite this seemingly obvious behavior in cartesian
coordinates, some confusion exists over the application of
the linear PIC/CIC shape factors at the boundaries of a
computational domain. For example, in [7, p. 257], which

F1G. 3. Same as Fig. 2a for spherical PIC shape factors.
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deals with a cne-dimensional, bounded, cartesian grid, we
read: “Thus, for diagnostic purposes, if nothing else, it is
necessary to double the charge collected at the boundary to
obtain the physical charge density.” Actually, as stated in
the same paragraph, the volume of the boundary cells is less
than that of the other cells-—namely one half. Thus, in
this particular example, the correct approach to obtain the
charge densities at the boundaries is not to double the
charge density, but rather to divide the boundary charge by
only half a “normai” cell volume.

While it may be argued that, in this example from
Ref. [7], the results with either approach are the same and
that, therefore, any confusion, if any, is over nomenclature
only, a more secrious problem exists in cylindrical and
spherical coordinates, as is shown below. But before
addressing the non-conservation of charge density in these
systems, we point out that, unlike for the cartesian coor-
dinates, PIC and CIC weighting give rise to different expres-
sions for the shape factor. It appears that this fact has not
been widely recognized; no comparitive discussions of
PIC versus CIC weighting in non-cartesian coordinates
are known to the author. An exampie of PIC weighting
in cylindrical coordinates—simply referred to as area-
weighting—can be found in Section 14-11 of Ref [17;
an c¢xample of CIC weighting in cylindrical coor-
dinates—although referred to as PIC weighting—can be
found in Ref. [8]; another example of weighting in cylindri-
cal coordinates can be found in Ref. [9], where it appears
that a variation of CIC weighting is used.

So let us consider the issue of non-conservation of charge
density with PIC and CIC weighting schemes in cylindrical
and spherical coordinates. In cylindrical coordinates
(D=2), the PIC shape factor from Eq.(3.1), using
Egs. (2.2), (2.4)—with o, =1, (2.5}, (2.7), and (2.8), gives,
for 0 < n < N, a normalized charge density

— 2(xn+1 +xn71)
xu+1 +2xn+xn—l.

{3.3)

p"

For n=0and rn = N, the correct normalized charge densities
can be calculated either separately, or they can be obtained
from Eq.(3.3) by setting x,_, =0 and x,,,=0, respec-
tively. From Eq. (3.3), it follows that g,# 1, in general,
implying non-conservation of charge density. For a uniform
grid with x,,, =x, + 4x, where 4x is constant for the
whole grid, the situation may seem a little better. Namely,
for such a uniform grid, p,, =1 for ail interior points on the
grid. However, non-unit densities result at the boundaries.
In particular, p, ~ 2 at the outer boundary, and, for x, =0,
po =2 at the inner boundary. We emphasize that, unlike in
the example from Ref. [ 7] discussed above, these non-unit
densities at the boundaries are not merely the result of con-
fusion over the correct cheice of the normalization volume.
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Rather, they are intrinsic to the PIC area-weighting scheme.
Also, we emphasize that one cannot resolve this difficulty by
modiflying the PIC shape lactor only at the grid boundaries,
because, in the process of particle-to-grid weighting, cells
generally collect charge from particles both to the left as well
as to the right of the embedded grid point. That one cannot
suffice by aitering the shape factors only at the boundaries
follows alse by inspection of Eq. (2.7), which shows that, if
S is modified, S, must be modified alse. In turn, then,
S must be modified to retain unit density in the first cel,
and so on.

A similar discussion applies to the cylindrical CEC shape
factors from Eq. (3.2). For these, the normalized charge
densities become, again assuming cell boundaries midway
between grid points (e, = 3 in Eq. (2.4)),

2 (xn+1+4xn+xn—l)
3 X,,+1+2x,,+x,,71 ’

Pn= (3.4)
valid for 0 < < N. Again, the normalized densities at the
boundaries may be obtained by setting x, _ =0for n=0,
and by setting x,., =0 for r=N. As in the case of
PIC weighting in cylindrical coordinates, CIC weighting
produces unit charge densities at the interior points of a
uniform grid. But this time, the density at the inner bound-
ary is too small, namely p, = 2 for x, =0, and the density at
the outer boundary is too large, namely py ~ 3. As is the
case for the PIC scheme, one cannot simply correct these
results by modifying the shape factors at the boundaries.

Finally, we consider briefly the case of spherical coor-
dinates (D =3). After the above discussion, it should not
come as a surprise that, for this case, neither PIC nor CIC
weighting conserve charge density in general. In fact, not
even at the interior points of a uniform grid is the correct
density produced. For example, for uniform grids with
xo=0 and «,=4%, spherical PIC weighting yicids the
normalized densities

(1207 + 4)/(120% + 1), 0<n<N,

p”={(4N2‘8N+4)/(7N2_5N+ 1), n=N. (3.5)

That 1s, p, =4 at the origin, a particularly poor value, and
P~ = %at the outer boundary. For spherical CIC weighting,
some rather complicated expressions result. Here we suffice
by stating that the normalized density at the origin of a
spherical grid is given by

po=14+2In13~ (atan ./12)/,/12 ~ 0.531,

a value worse than that obtained at the origin of a cylindri-
cal coordinate system with CIC weighting.

In summary, although PIC and CIC weighting con-
serve charge density for a cartesian coordinate system,
charge density is not conserved in cylindrical and spherical
coordinates. Non-conservation of the charge density is

(3.6)
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particularly noticeable at the boundaries of the grid, and it
is worse for spherical coordinates than it is for cylindrical
coordinates. Also, it is worse for PIC weighting than it is
for CIC weighting. In the next section, we show how this
situation can be remedied easily by alternative choices for
the shape factors.

IV, ALTERNATIVE PIC AND
CIC SHAPE FACTORS

In this section we derive several cylindrical and spherical
shape factors that conserve charge density on an arbitrary
radial grid. We refer to these as alternative PIC and CIC
shape factors primarily because their mathematical form is
very similar to the conventional PIC and CIC shape factors
discussed in Section III. In Sections V and VI, we consider
several more particle-to-grid weighting schemes that
conserve charge density also.

Let us start with the following general polynomial expres-
sion for the (right-hand) shape factor of the nth cell:

X

S0 =2 = 1 e,
41 n

a_y
x(T+a0+a1x+ ):I

For convenience, we have used x for the particle position
x,, and the a/s are arbitrary parameters. This shape
factor satisfies the localization conditions from Eq. (2.6)
for arbitrary coefficients a;, namely S(x,,,)=0, and
S*(x,)=1, unless x=x,=0and a_, #0, as is the case for
the cylindrical CIC shape factor from Eq. (3.2). Substitution
of the general expression from Eq. (4.1) into the charge den-
sity conservation requirement from Eqs. {2.8) or (2.9) now
yields a requirement for the parameters a,, solution of which
renders the coefficients a; in terms of the dimension D,
the grid points x, and x,,,, and the cell boundary
parameters «,,.

So let us consider application of this procedure to a cylin-
drical grid with cell boundaries midway between grid points
(2, = 3). For this case, the conventional PIC shape factor
from Eq. (3.1) can be written 1n the form of Eq. (4.1) using
only one of the coefficients a;, namely a;=(x,+x,.;)7".
Retaining, again, only the coefficient a, in the general poly-
nomial from Eq. (4.1), but requiring conservation of charge
density as expressed by Eq.(2.9}, we find, in terms of the
above value of ga,, the requirement that a,= — ja,.
Substituting this new value g back into Eq.(4.1), the

{4.1)

alternative, charge-density-conserving cylindrical PIC
shape factor becomes
57093 (222) L ()
" 2 X1~ Xp 2 xi—rl_xi
_(x,,fo)(;'anH—l;?)x,,—x). (42)
2(xn +1 xn)
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That is, the alternative form of the cylindrical PIC shape
factor is a linear combination of the conventional linear and
cylindrical PIC shape factors. Note that the latter expres-
sion is more computationally efficient than the former,
because, with appropriate precalculated factors, only one
multiplication and one division are required per particle
position x. This alternative cylindrical PIC shape factor is
illustrated by the solid curves in Fig. 2a. The difference with
the conventional PIC shape factors, illustrated by the
dashed curves in Fig. 2a, is most noticeable near the origin,
where, as shown in Section 11, conventional PIC weighting
gives rise to the largest violation of conservation of charge
density.

Similarly, we note that the conventional cylindrical
cloud-in-cell shape factor from Eq. {3.2) can be expressed in
terms of the general polynomial from Eq. (4.1) with only a

single non-vanishing coefficient a;, namely a _, = — 1. With
Eq. (29}, it follows that charge density is conserved,
instead, with the alternative value @' | =%a_, = — i. Thus,

an alternative, charge-density-censerving formulation of
cylindrical CIC weighting is given by the shape factor

(9= Sae1= (T8

Xng1— Xn 4

(4.3)

This alternative CIC shape factor is illustrated by the solid
curves in Fig. 2b, along with the conventional CIC shape
factors, represented by the dashed curves. Again, the
difference between the two sets of shape factors is most
noticeable near the origin. Note also that, just as for the
conventional cylindrical CIC shape factors, a non-unit
value of the shape factor results for x = x,=0, namely
S5 (0)= 2. If this feature is undesirable, one could replace,
on the interval x,<x<x,, the CIC shape factor from
Eqg. (4.3) by the PIC shape factor from Eq. (4.2). Indeed,
because the PIC and CIC shape factors from Eqgs. {(4.2) and
{4.3) conserve charge density for each half cell individually,
one can choose different expressions for the shape factor on
each grid interval, if desired.

Next, we consider the case of PIC weighting in spherical
coordinates. Expressing the PIC shape factors from
Eq. (3.1}, with D=3, in terms of the general polynomial
from Eq. (4.1}, we {ind that two of the coefficients a; are
non-vanishing, namely g, and a,, which are given by
ao=(x,, 1 +x,)a,=(x2+x,x,,.+x.,,)"". To conserve
charge density, alternative values must be chosen, namely
so as to satisfy Eq. (2.9). Although an infinite number of
combinations of a4, and g, can be found with this property,
an aesthetically pleasing result is obtained by retaining
the same ratio between the two coefficients a4, and a,. This
gives, in terms of the above values, aj=—la, and
a} = ~ 1a,. Substitution of these values into Eq. (4.1) then
yields a shape factor that can be written as a linear combina-
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tion of the linear and spherical PIC shape factors from
Section 111, namely,

_ 3 43
S:(x):%(Xr!+1 x)ﬁ%(x;ﬁ_, xj). (4.4)

Xpp1— X Xa+1 Xn

Note the strong similarity of this expression for the alter-
native spherical shape lactor with that for the alternative
cylindrical shape factor from Eq. (4.2). As is the case for the
alternative PIC shape factor from Eq. (4.2), the expression
in Eq. (4.4) may be rewritten slightly to reduce the number
of operations that are required during actual computation.
Conventional and alternative spherical PIC shape factors
are shown in Fig. 3. Again, the differences between the two
are most noticeable near the origin,

Finally, we consider very briefly the case of spherical CIC
weighting. In this case, it is actually too cumbersome to
write the shape factor from Eq, (3.2) in terms of Eq. (4.1},
because of the occurrence of a factor 12x% + (x,,,., — x,)? in
the denominator—it is this type of denominator that gives
rise to the non-rational result for the charge density in
Eq. (3.6). Of course, it is stiil possible to derive alternative
expressions for the shape factor that do conserve charge
density. However, we leave this exercise for the interested
reader.

V. NEAREST-GRID-POINT AND
SPLINE WEIGHTING

In most applications, especially those in which conven-
tional PIC and CIC weighting have been used, the aiter-
native PIC and CIC shape factors from the previous section
should be adequate. Here, we discuss several more density-
conserving shape factors that are variations on weighting
schemes that have been used elsewhere, namely nearest-
grid-point weighting and spline weighting, which are,
respectively, coarser and smoother than either PIC or CIC
weighting.

First, we consider the case of nearest-grid-point (NGP)
weighting, In this method, the value of the shape factor is
either unity or zero, and all of the charge carried by the
particle is assigned to the grid point nearest to the particle.
From the density conservation requirement from Eq. (2.9},
it is immediately obvious that this weighting scheme conser-
ves charge density in an arbitrary coordinate system as long
as the concept of nearness is interpreted as the particle being
located inside of the cell to which the charge is to be
assigned. For two-point weighting with cell boundaries
midway between grid points, the two criteria are cquivaient,
But, for example, for cylindrical coordinates with azimuthal
dependence, they are not, This is illustrated in Fig. 4, in
which particles that are located inside the shaded region are
closer to the grid point (r,, ¢,), yet need to be assigned to
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rn+1

r.rH—‘l/Z
rn q, ¢ﬂ+1/2‘p

n+1 n

FIG. 4. Illustration of nearest-grid-point weighting for cyhndrical
coordinates with azimuthal dependence. To conserve charge density,
particles located inside the shaded area must be assigned to the upper
right grid point, even though they are actually closer to the lower right grid
point.

the grid point (r,, |, ¢,) to achieve conservation of charge
density. Thus, in this particular example, the term “nearest”
should apply, independently, to the radial and azimuthal
coordinates, rather than to the actual distance from the
particle to the grid points. Simiiar considerations apply in
the case of spherical or other coordinates.

Returning to the case of two-point, single-coordinate
shape factors, we now derive some further density-con-
serving weighting schemes. But, before doing this, let us
consider, for simplicity, a dimensionless formulation of the
problem. Specifically, we introduce a dimensionless particle
coordinate £,=1{x, —x,)/(x, ., —x,), which varies from 0
to 1 as the particle moves between the grid points x, and
X,+1. and we write the corresponding right-hand shape
factor as §: {¢,). The requirement for conservation of
charge density from Eq. {2.9) can now be expressed in terms
of the moments Af, , of the shape factor, defined by

M=[ 8lE)Ed, (51)

Namely, for arbitrary grid coordinates x, and x,.,,
arbitrary dimensions D, and arbitrary cell boundary
parameters «,, conservation of charge density as imposed
by Eq. {2.9) is assured if these moments satisfy the condition

-1,y
z (Dk l)xr?_l_k(xn-#!‘xn)k

k=0
O(k+l
M,,—*= =Q.
X( nk k+1)

In addition, localization of the shape factor can be imposed
by the usual boundary conditions

(5.2)

e

Sry=1,

. Sr=o. (5.3)
With Egs. (5.1)-(5.3), it is straightforward to solve for any
adjustable parameters in a given general expression for the
shape factor, such as that of Eq. (4.1} in the previous

section.
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With reference to the requirement of conservation of
charge density as expressed by Eq. (5.2), we note that not
each of the terms in the summation from Eq. (5.2) have
to vanish separately. However, if they do, namely if the
moments satisfy the condition

M=o (k+ 1),

the special situation is obtained in which the dimensionless
shape factor is independent of the grid coordinates x, and
X4, Such is the case, for example, for linear PIC/CIC
weighting with grid boundaries midway between grid
points. Namely, in this case, §(&,)=1—¢,, so that the
zeroth moment is equal to 1, and Eq.(5.4) is satisfied
indeed. Generally, however, more complicated expressions
for the shape factor resuit if it is required to satisfy the
stricter requirement from Eq. (5.4) as opposed to the suf-
ficient requirement from Eq. (5.2). For example, to satisfy
Eqgs. (5.3) and (5.4} for cell boundaries midway between
grid points in cylindrical coordinates, a cubic polynomial is
required, namely 57 (&) =1+ 3¢, — &2 4+ 58}, Of course,
in terms of the required number of operations per particle
position, this expression is less economical than the
quadratic form of the alternative cylindrical PIC shape
factor from Eq. (4.2) in the previous section.

Requiring only the general requirement from Eq. (5.4) to
be satisfied—as opposed to the stricter requirement from
Eq. (5.2)—we mention here two more two-point weighting
schemes that do not only satisfy the localization
requirements from Eqg. (5.3) and conserve charge density,
but that possess another property as well: namely, that they
vary smoothly as the particle moves through a computa-
tional cell. In particular, we impose, in addition to the
boundary condition from Eq. (5.3), the requirement that
dS ¥ /dE, =0 for both &, =0 and for &, =1. The simplest
shape factor with this property, in terms of the required
number of operations per particle-to-grid weighting, is
given by the quadratic spline

I_én/Sn> 2%51 (55)

S» ‘5")={(1 SLP s <,

ssﬂ!
<1,

where the knots s, are found by substituting Eq. {3.5) into
Egs. (5.1) and (5.2). In the case of spherical coordinates, this
leads to a cubic equation for the knots s,. For cylindrical
coordinates, a quadratic expression results, for exampic,
2pst+2s,=1 for grid boundaries midway between grid
points, where p is given in terms of the grid coordinates
x, and x,,,, namely, p=(x,., —x,)/(x,+,+3x,). For
values of the cell boundary parameter «, other than 3, the
resulting values of s, are in the proper range, namely

0<s,<1,as long as 1/./6 <, <, or 0.408 S a, < 0.667.
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FIG. 5. Illustration of the smoothly varying, density-conserving shape
factors from Section V; solid and dashed curves represent the spline from
Eq. (5.5), and the equivalent expression from Eq. (5.6), respectively.

Another expression for the shape factor that has zero
derivatives at the grid points is given by the polynomial
SrE)=01-&0—1,+1,8)]% (5.6)
This expression requires at least four multiplications per
particle-to-grid weighting, but does not require a logical
operation as does the above spline—and may therefore
be programmed on a machine with vector-processing
capabilities, For cylindrical coordinates, conservation of
charge density as imposed by Eqgs. (5.1) and (5.2) leads
again to a quadratic expression, namely in terms of the
parameter 1,. This expression has well-behaved solutions if
V<o, < &, or 0.321 S, < 0.643—for smaller values,
the value of 7, becomes complex; for larger values, S (&,)
becomes larger than unity on part of the interval 0 < £, < 1.
Figure 5 displays the smoothly varying shape factors from
Eqgs. (5.5) and (5.6) for the case of cell boundaries midway
between grid points. Note that, on the entire interval, the
difference between the two cases is quite small. For the case
of spherical coordinates, the general expressions from
Egs. (5.5) and (5.6) can be used as well. In this case, cubic
expressions for the parameters s, and ¢, have to be solved
before the shape factors can be calculated.

V1. REVERSE APPROACH: CHOOSING
CELL BOUNDARIES

Finally, we discuss one more approach to achieving
correct charge densities in the process of particle-to-grid
weighting. This approach is, in essence, the reverse of the
techniques discussed above. Namely, instead of selecting a
density-conserving shape factor for a given choice of cell
boundaries, this approach seeks to adjust the cell bound-
aries so that, for a given shape factor, the correct densities
are obtained. Thus, instead of choosing an expression for
the shape factor whose moments satisfy Eq. (5.2) for a given
value of «,, the cell boundary parameter «, is chosen to
satisfy Eq. (5.2) for a given shape factor. Or, equivalently, in
terms of the non-dimensionless expressions for the conser-
vation of charge density in Section II, the cell boundaries
X, 1,,—which depend on «, as expressed in Eq. (2.4)}—are
chosen so as to satisfy Eq. (2.9).
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As an exampie of this approach, let us consider the con-
ventional PIC weighting scheme for cylindrical coordinates
as given by Eg. (3.1) with D=2, As shown in Section III,
this shape factor does not produce the correct charge den-
sities for the conventional choice of cell boundaries midway
between prid points. However, as is easily verified with
Eqs. {(2.4) and (2.9), or with Eqgs. {(5.1) and (5.2} in the
previous section, correct charge densities result if the cell
boundaries x, , ;,, are chosen according to

2 1.2 2
xn+],"2_ 2(xn+xu+1)'

{6.1)

For example, the cell boundary enclosing the origin would
be located at x,,, ,,, = X, /\/E instead ef at x,, 1= x,/2, as
is normally the case. However, if one takes the approach
that cell boundaries can be freely adjusted to render correct
charge densities for arbitrary shape factors, one could just
as well use the linear PIC weighting scheme in cylindrical
coordinates, namely that given by Eq.(3.1) with D=1,
Namely, using the approach of adjusting cell boundaries,
correct densities are again obtained in cylindrical coor-
dinates, even for linear PIC/CIC weighting, if the values of
X, 41,z are chosen according to

(6.2)

2 1 2 2
xn+l,‘2”_ 3(xn+l +xﬁ+1xlf+xﬂ)!

yielding, for example, a cell boundary at x, Uzlejﬁ
around the origin. Stmilarly, either linear, quadratic, or
cubic (conventional) PIC weighting can be rendered den-
sity-conserving in spherical coordinates if cell boundaries
are adjusted in an appropriate manner. Quite generally, it
follows from Eq. (5.2) that, for any given shape factor, the
dimensionless ceil boundary parameters «,, are in the range

O<Mﬂ,0<an“<-(DMH,D—I)I/D‘S11 (63)

where the upper limit applies at the origin of the coordinate
system, namely at x, =0, and the lower limit applies at the
outer boundary, where 1 —x,/x,, , €0.

From a practical standpoint, the “reverse approach” of
selecting cell boundaries s0 as to yield correct charge den-
sitics is as straightforward to implement as the approach of
selecting an expression for the shape factor that conserves
charge density for a given choice of cell boundaries.
However, the question arises if this approach is consistent
with the finite difference techniques that are used
simultancously with particle-to-grid weighting in typical
particle simulations. For example, if the discretization
scheme for Poisson’s equation assumes grid boundaries
midway between grid points, it seems inconsistent to choose
ceil boundaries in different locations merely for the purpose
of calculating charge densities. This matter of consistency
will not be addressed further here, as it requires a more com-
piete analysis of the particle simulation method, which is
beyond the scope of this work. However, from consistency
considerations alone, it seems, at least to the author, that
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the techniques from Sections I[II-V constitute the more
desirable approach, namely, to select an expression for the
shape factor that, for a given choice of cell boundaries,
yields correct charge densities on the computational grid.

VIL CONCLUSIONS

We have shown that, although, in plasma particle simula-
tions, it is taken for granted that the total charge in the
system must be conserved in the process of particle-to-grid
weighting, conservation of charge density is not guaranteed
for arbitrary weighting schemes, particularly for cylindrical
and spherical coordinates. Namely, for these latter two
systems, we have shown that the much-used PIC and CIC
weighting schemes do not result in uniform charge densities
on the grid, even for a uniform distribution of particles. This
effect is most pronounced at the boundaries of the grid, but
is, actually, intrinsic to the definition of the shape factor for
the whole grid. Thus, one cannot apply a correction factor
only at the boundaries to remedy the situation.

Instead, we have shown, quite generally, how the non-
conservation of charge density can be overcome, and we
have derived, specifically, a number of alternative shape fac-
tors that conserve charge as well as charge density. These
are given in Egs. (4.2) and (4.3) for alternative PIC and CIC
weighting in cylindrical coordinates, and in Eq. (4.4) for
alternative PIC weighting in spherical coordinates. Mathe-
matically, these alternative shape factors are no more
complicated than the conventional, non-density-conserving
expressions, so that they can be implemented without any
penalty of increased computational time.

A second approach has been presented also, namely one
in which no modification to a given shape factor is required,
but, instead, the location of cell boundaries is modified.
Thus, different normalization volumes are obtained by
which charges on the grid can be converted to charge den-
sities on the grid. Since, however, cell boundaries are nor-
mally chosen as the basis for a finite difference formulation
of the electrostatic or electromagnetic interactions between
the plasma particles, the conceptual difficulty arises with
this alternative approach of having two different sets of cell
boundaries in the same calculation, A comparative study of
the merits of the two methods, namely adjusting the shape
factor on the one hand and adjusting the normalization
volumes on the other hand, is beyond the scope of this
discussion, but warrants further investigation.

It was also beyond the scope of this work to carry out a
series of numerical simulations to compare the performance
and accuracy of conventional and alternative PIC and CIC
weighting factors. Differences between the two shouid be
most pronounced in calculations in which relatively few grid
points are used and in situations where large gradients in
particle densities exist near the origin in cylindrical or
spherical grids. Finally, it would seem logical that, when
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using the alternative weighting schemes discussed here,
identical schemes be used for particle-to-grid weighting and
for the reverse process of grid-to-particle weighting for the
purpose of calculating electric and magnetic fields at the
particle positions. However, this subject, also, may warrant
some further analysis.

In summary, then, this work has shown that care must be
taken when calculating charge densities in plasma particle
simulations on non-cartesian grids, and we have described
several approaches that circumvent the problem of yielding
non-uniform charge densities for uniform plasma distribu-
tions, as is the case with conventional weighting schemes.
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